

Table-Lookup Methology with a Branch, for $log_b(X)$.

FIG. 1
(PRIOR ART)

Argument Reduction: Get B_j from set of breakpoints

Compute $Z_{hi} + Z_{lo} \approx C(YB_j - 1)$, $|Z_{hi} + Z_{lo}| \le delta$ $\frac{204}{204}$

Table Lookup:

Get T_{hi}, T_{lo} approx. log_b(1/B_j) Get L_{hi}, L_{lo} approx log_b2 208

Core Approximation:

Compute $P \approx \log_b (1 + Z/C) - Z$ 212

Reconstruction:

Compute $A_1 = kL_{hi} + T_{hi} + Z_{hi}$ Compute $A_2 \approx kL_{lo} + T_{lo} + P$ Return $\underbrace{A_1 + (A_2 + Z_{lo})}_{otherwise}$ or $\underbrace{(A_1 + Z_{lo}) + A_2}_{kN + j = 0}$

216

A Branch-Free Table-Lookup Methology for $log_b(X)$.

FIG. 2

Argument Reduction:

Get B_j , j=0,1,..., 32 from set of breakpoints Compute $Z_{hi} \approx Y_{hi}$ $B_j - 1$, $Z_{lo} = Y_{lo}$ B_j , $|Z_{hi} + Z_{lo}| \le 2^{-6}$ $\frac{304}{}$

Table Lookup:

Get T_{hi} , T_{lo} approx. $log_b(1/B_j)$ Get L_{hi} , L_{lo} approx $log_e 2$ 308

Core Approximation:

Compute $P \approx \log_e (1 + Z) - Z$ 312

Reconstruction:

Compute $A_1 = kL_{hi} + T_{hi} + Z_{hi}$ Compute $A_2 \approx kL_{lo} + T_{lo} + P$ Return $A_1 + (A_2 + Z_{lo})$ or $A_1 + A_2$ otherwise $A_1 + A_2 + A_3$ $A_1 + A_2 + A_3$ $A_1 + A_3 + A_4$ $A_1 + A_2 + A_3$ $A_1 + A_2 + A_3$ $A_1 + A_2 + A_3$ $A_1 + A_3 + A_4$ $A_1 + A_2 + A_3$ $A_1 + A_4$ $A_2 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_2 + A_4$ $A_1 + A_4$ $A_2 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_2 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_2 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_2 + A_4$ $A_1 + A_4$ $A_1 + A_4$ $A_2 + A_4$ $A_3 + A_4$ $A_4 + A_4$ A_4

Branch-Free Table-Lookup $\log_{e}(X)$.

FIG. 3

Argument Reduction:

Get D_j , j = 0,1, ..., 32 from set of breakpoints, $D_j = CB_j$, C = 28/64Compute $Z_{hi} \approx Y_{hi}$ $D_j - C$, $Z_{lo} = Y_{lo} D_j$, $|Z_{hi} + Z_{lo}| \le 2^{-6}$

Table Lookup:

Get T_{hi} , T_{lo} approx. $log_b(1/B_j)$ Get L_{hi} , L_{lo} approx $log_{10}2$ 408

Core Approximation:

Compute $P \approx \log_{10} (1 + Z/C) - Z$ $\frac{412}{}$

Reconstruction:

Compute $A_1 = kL_{hi} + T_{hi} + Z_{hi}$ Compute $A_2 \approx kL_{lo} + T_{lo} + P$ Return $A_1 + (A_2 + Z_{lo})$ or $A_1 + A_2$ otherwise $A_1 + A_2 + A_3$ $A_1 + A_2 + A_3$

Branch-Free Table-Lookup $log_{10}(x)$.

FIG. 4

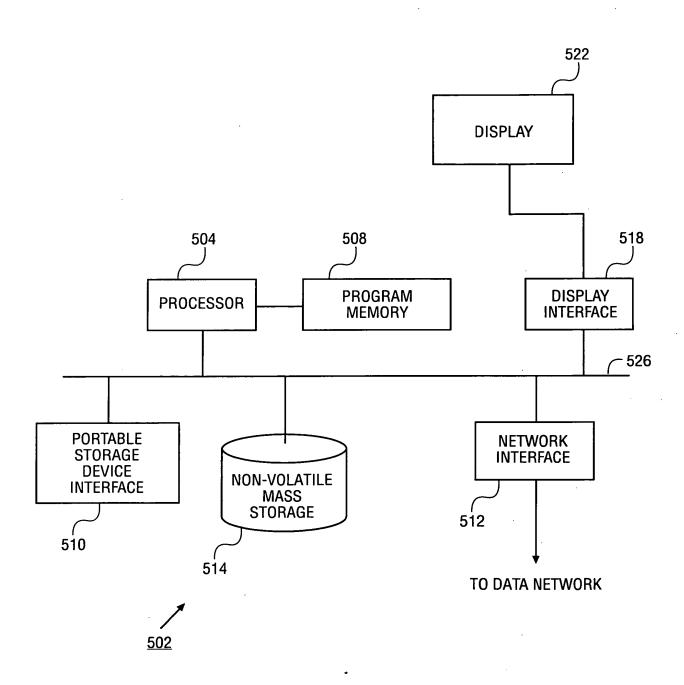


FIG. 5